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The study of t)ie two-dimensional Ising model is continued. Its specific heat at the Curie
point is investigated. The quantity in question is computed for six successive finite matrix
problems and the conclusion is drawn that the specific heat is infinite at the Curie point. A new
closed form approximation of the partition function ) is then developed by using the matrix
method in its variational form. The two power series for X at extreme temperatures are used as
a test for this and various other approximations, and it is found that the new result is a con-
siderable improvement over the existing solutions. Finally it is pointed out that these closed
form solutions support our conclusion as to the place and nature of the Curie point transition.

A FTER having collected in Part I' some exact
information concerning the partition func-

tion f of the two-dimensional Ising model we
wish to present in this paper some approximate
methods of our own and compare their results
with the exact information available and other
well-known approximate schemes.

Before proceeding let us recall the notation.
We denoted by X the partition function per spin,
i.e. , for X spins we have

f= 7,"'(K) (37)

The parameter X is the only variable on which X

depends. It combines the coupling energy J and
the temperature T in the form

K= J/2kT. (38)

The knowledge of X(K) is not sufficient: for the
computation of the magnetic properties of the
model, but it permits calculation of the thermal
quantities, particularly the total energy E and
the molar specific heat C [Eqs. (17) and (18)$.

5. POWER SERIES DEVELOPMENTS OF

' H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252
(1941), this issue.

The energy of our system can be obtained by
elementary reasoning in both the very high and
very low temperature region.

At high temperatures (i.e. , K=O) the spins
orient themselves at random regardless of
coupling forces. We conclude, therefore, by

direct inspection of Eq. (1) that

Z(0) =0.

By a similar reasoning we find for large X

E(~)= —XJ.
Equations (2) and (37) then permit the compu-
tation of X in these two extreme cases. We find

(39)

(40)

Either one of these two limiting formulas can
be continued by a power series. The continuation
of (39) is the well-known development of X in
powers' of 1/T which in our case means powers
of K. If we carry out this development in Eq. (2)
we get

f= & L1+KZuu~+kK'(Zu~~)'+
(i,I') (i,l )

= 2"[1+K(Q u, ui„)A„+2K'(( Q u;u.,.) ')„„-+
(i,l ) &i,a)

The averages are quite elementary to evaluate
because they are to be taken at infinite tempera-
ture, that is, regardless of coupling. They are
expressi'ons containing various powers of X. But
when we raise f to the power 1/X in accordance
with (37) these powers disappear. Thus we find
for X

4 77 1009
X=2i 1+K'+ K4+ Ki+ Ks+ -i. (4—1)

3 45 )
' W. Opechowski, Physica 4, 181 (1937).
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TABLE I. Values of eigenvectors.

VEcToR A~

1.000000
.249038

VECTOR A3

1.000000
.186931
.105677
.231108

VECTOR A4

1.00DOOO
.159434
.103346
.160827
.099340
.026148
.079123
.222893

VEcTQR AS

1.000000
.145548
.100846
.129103
.098804
.019608
.075422
.148388
.096230
.020594
.011008
.023617
.070174
.023648
.066754
.218677

VECTOR Ag

1.000000
.137739
.098916
.112698
.097652
.016676
.071758
.114363
,096454
.016343
.n10661
.016817
.069010
.016516
.062185
.141720

.094527

.017936

.009995

.017578

.010148

.002709

.008510

.022371

.065628

.017673

.008320

.022060

.056461

.022385

.060217

.216286

It is also possible to find a power series valid
for low temperatures. " In the very lowest state
all spins are oriented parallel to each other. ' The
first excited state is given by the reversal of a
single spin and requires an excitation energy 4J.
The next higher state corresponds to the reversal
of two neighboring spins (excitation energy 6J),
the following to the reversal of two independent
spins, and so forth. The development proceeds in

inverse powers of

(42)

and yields, after extraction of the iVth root,

X=k'{1+0 '+2k "+5k "+14k "+ ) (43)

Equations (41) and (43) must be different
aspects of one and the same power series, in view
of the symmetry property expressed through
(26), (29) and (30). This is, in fact, true and can
be made explicit through the introduction of the
following parameter

sinh2E
K=

2 cosh'2E

Its invariance property

x(E') = «(X*) (44b)

has already been pointed out in (26b). It vanishes
at either very high or very low temperatures,
and behaves as X in the former and as k ' in the
latter region. Its maximum value at. %=K. is

"F.Bloch, Zeits. f. Physik 61, 206 I', 1930}.

equal to ~. Kith the help of this parameter we
may unite the two series into

x(K) =X(E)/cosh 2K = 2 {1—x' —4~' —29m'

—265~' —2745~"—. ). (45)

For our problem these series solutions are of no
direct interest, for they seem to diverge in the
critical region. They are, however, a very
agreeable criterion to test the accuracy of ap-
proximate solutions by comparing their series
development with (41) and (43).

6. THE SPECIFIC HEAT AT THE

CURIE POINT

If our model leads to one singular temperature
only (which is the standard idea associated with
the Curie temperature) then the Eqs. (26), (30),
and (31) permit us to limit our attention to the
point E=0.44069. In addition, the possibilities to
be expected at that point are essentially twofold
only: Either the specific heat tends to infinity as
we approach the infinite problem over a sequence
of finite matrix problems, or else it stays finite, in
which case both energy and specific heat must be
continuous PEqs. (34) and (35)].

We have applied this test to the sequence of
V matrices (20) of order 2, 4, 8, 16, 32. This
corresponds physically to the arrangement of
spins along the thread of a screw with 2, 3, 4, 5, 6
spins per pitch. In addition, we added the
solution ) ~ having one spin per pitch as the hrst
member. This case is equivalent to a linear chain
with doubly strong coupling.

There is no dif6culty of principle in computing
these X's as functions of X, and in particular their
second derivative at X=X,. In practice, how-
ever, it is found that the secular equation derived
from (20) becomes rapidly unmanageable as the
order of the matrix increases. Another, more
elegant, method has therefore been followed„
which uses a good number of special properties
of such V matrices.

In the first place, it is possible to obtain the
largest eigenvalue X for a given value of E. by
operating repeatedly with the matrix (20) on an
arbitrary vector (iteration method). " After a

'LFrazer, Duncan and Collar, E/ementary Matrices and
some

Applications

to Dynanrics and Differential Equations
(Cambridge University Press and the Macmillan Company,
1938},p. 138.
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number of operations which depends on the skill
with which the initial vector was chosen the
vector becomes the eigenvector of the largest
eigenvalue and the matrix multiplies it each time
with that cigcnvaluc. In this fashion eigenvalue
and eigenvector of (21) were calculated at K=X..
For the eigenvectors the values in Table I were
obtained and for the eigenvalues

Kg=2.828427, X3=2.60ii45, Kg=2.559762,
Kg=2.663252, X4=2.573648, X6=2.55i953.

It is well known from matrix calculus that the
knowledge of the eigenvector for a given value of
some parameter X permits the determination of
the 6rst derivative of the eigenvalue with respect
to this parameter. For the second derivative,
however, the knowledge of all eigenvectors is
usually necessary. But in our particu1ar case it
can be circumvented. A matrix can be found
whose expectation value at E, equals the second
derivative x"; this is due to the special properties
of this point.

The method runs as follows. The matrix 8
possesses for each eigenvalue a right-hand and a
left-hand eigenvector as pointed out in (14) and
(15). With the help of (20), (27), (29) and the
cross convention for transposed matrices we get
the two equations in the form

8(X)A(E) =x(K)A(K) (46)

and 3+(K)8(X)=x(K)3+(E). (47)

Differentiation of these equations leads to the
following formulas for x'(X} and x"(K)

3+(K)A(E)x'(K) =3+(X)8'(X)A(E) (48)
and

3+(K)A(K)x"(X)=3+(X)8"(K)A(E)
+3'+(K)8'(K)A(E') +3+(X)8'(E)A'(E)

—x'(X}IB+(X)A'(E)+3'+(E)A(E) I. (49)

The special properties of E=E, come in through
(25), (26), and (28)

Z8(E) —8+(E*)Z =0 (50)

with X=Z+ and Z' = 1. (51)

Because of (46) and (47) the matrix Z will also
relate the eigenvectors 3 and A, except for an
arbitrary factor. We may let this factor be unity
and wIIte

3(E') =RA(K} and A(E*)=&3(E). (52)

3'+(E,}8'(E,)A(K.) = —A'+(K.)+8'(K.)ZB(E,)
=A'+(K, )8'+(X.)3(K.)
=3+(K,)8'(X.)A'(E,),

which reduces (48) and (49) to

x'(E.) = 0, (56)

x"(K.) = —

{
3+(E.)8"(K,)A(E.)3+(E,)A(K,)

+23+(X.)8'(K.)A'(X.)g. (57)

At K=X. the matrix Z may serve to transpose
the lines and columns of 8. The same thing can
be brought about for all X's by reordering the
components:

S(E)8(K)—8+(X)S(K)= 0,
3(X)-$(E)A(K)

(58)

and hence, because of (52),

A(X*) ZS(K)A(E). (59)

For n =5 the reordering matrix S(E), expressed
in terms of our parameter k de6ned by (42), has
the following form

!'k 4

0
0
0
0
0
0

(E)= 0
0
0
0
0
0
0
0

q0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 Dk&
0 I 0
0 0 0
0 0 0
0 0 0
0 0 0
Q 0 0
0 0 0k20 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 Dk&0
I 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 k2 0 0 0
0 0 I 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0.0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 Q

0 0 k"-0 0
0 0 D 1 D

0 D 0 0 0
0 0 0 0 0
0 0 0 0 k2
0 k4 0 0 0
0 0 0 0 0
0 0 0 0 0

k& 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0$
0 k2
0 0

0 0
0 0
0 0

(60)

1 0
0 0 ~

It is important to notice that is a constant
matrix. Remembering that

K*,=K, and (dK*/dK) z=x, = —1, (53)

we thus derive the following relations from (50)

Z8'(E.)+8'+(E.)X= 0, (54)

3'(E.) = —ZA'(E.). (55)

These equations will simplify (48) and (49).
Using (51), (52), (54) afld (55) we get

3+(K.)8'(K,)A(X.) =A+(K,)Z8'(E.,)PB(E,)
= —A+(E.)8'+(K,)3(X,)
= —3+(K.)8'(E,)A(X,)
=0
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It is immediately generalized to other orders with
the help of the list of components in I, p. 259. The
matrix inverts the sequence of signs, that is
+++—+ goes over into + +++. In addi-
tion, it multiplies with a factor exp( —KQ,p;p;+,).
8, 7 and 8 are related by a fundamental
identity. Using (50) and (58) we get

ZS(K*)&S(K)8(K)=8(K)ZC(K*)ZS(K),
i.e. , the expression

ZS(K*)ZI~(K)

commutes with 8 and hence, assuming no
multiple roots, is expressible in terms of it. '6~e

find, by direct inspection,

X~~(K*)Z ~(K) = {2[«(K) j*'8-'(K) I
"-' (61)

Z8(K,)A(K) =(1/x(K, ))'" ""A(X,). (62)

With the help of ZS(K„.) we define a new matrix
K which shall be a function of 8 not depending
directly on E

53=n+P8+ p8'+ N3'+ . (63)
and for which

te(K.) =ZS(K,). (64)

Because of (50) and (54), the derivative of tg
obeys the equation

Zt8'(K.)+83'+(K.)X=0,
which, considering (51), means that

2I ="ate'(E.) (65)

where n is, as usual, the number of spins per
pitch, that is, 2" ' is the matrix order. Because of
(59), already ZS(K) commutes with 8 at K =K,
and must equal some square root of (61). The
sign varies for different eigenvectors and is found
to be 'positive for our vector A(K,). Remembering
that «(K,) = ~~ and (46) we get

is an antisymmetric matrix. Because of (63), RV3

admits A as an eigenvector; if we differentiate
this relation as well as (59) and remember (64) we
arrive at

53'(K.)A(K.)+Z~(K,)A'(K.)
= (1/x(K ))'" '»'-'A'(K„, ),

'(K,)A(K„.)+Z~ (K„)A'(K,)
= —(1/x(K ))'" ""A.'(X,:).

Subtracting and simplifying with (51) and (65)
we get

A'(X,) =-,'(x(K,))'n—""Z{)f,—6'(E.) IA(K.). (66)

Uniting finally (57) and (66), simplifying with
(52) and (54) and leaving. oE the now superfluous
argument X, we get the final formula

1x"=—
{
B+8"A+x&" ""A+8'+I~'—Pf IA]. (67)

B+A

Expression (67) for x" has the desired form.
The eigenvalue x and the eigenvectors A and B
are numerically given on page 264 and through
(52); the matrices involved are obtainable by
differentiation from (20), (27), and (60). The
matrix 8 is the only exception, being given
through implicit equations. It is easy, however,
to obtain for it a number of equations far in

excess of the number of its components, par-
ticularly since 5 is restricted to be antisymmetric.
For we have, for any power p of 8, because
of (63)

&8&—8&K =0,
which, because of (50), (54), (64), (65), gives

~+PI —s18~ =P(8&)'+ (8&)'+S. (68)

In the case n = 5, the matrix obtained for 5 looks
a.s follows

0

2k 2

2k '-

2k '
9t = 2'k "-

2k 2

n

2$y, -n

0
0
0
0
0
0
0

2"k-"-

2

0
2

2&k 2

2
24-2

0

—2k '
0
0
0
0
0
0

—24-2
0

2k2

2~k2

0
0
0

0
0

2sk '
2

0
—2&'k 2

—2
0

—2
0
0
0
0

0
—2&k 2

0
2~k'

0
2"k '

0
0

2k"-

2~k2

0
0
0
0

0
—2

2
—2~k-'

0
24s

2'&k"-

—2k 2

0
—2*k 2

0
0
0
0
0
0

—2k~
—24'

0
2~k2

0
24-~

I—2&k 2

0
2&k ~

0

—2

0
0
0
0
0
2

—24-2
—2

0
0

—2k 2

0

0
2i k2

0
0
0
0

2k2

0
0

242
0
0

0
-2

1—2'ks
2
0
0
0
0
0
0

24~
0

—24~
0

2&k2

—2

0
0
2k2

0
-2k-'
—242

2k~

0
—2k"-

—24-"
0

24~
~ 2k&

24~
—2k~

0

0
—2

—2sk~

2
—242

0

—2

0
0

—2ik2

0
0
0
0
0

—2k '
-24--

0
0
0

0 '

24-~
0

24~
—2k~

0
0
0
0
0

0
—2

0
0
0
0

—24~
2

—242
0

—24~
0
0
0

24~
—2

—2k 7

0
0
0
0
0
0
0

—242
2k~

0
'0

—24-
0

—24-"-'

2
I—2'k "-

2
0
0
0
2

-2&k ~

,0

(69)
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FIG. 5. Behavior of specific
heat at Tc in successive "screw"
approximations. The logarithm
of the number of spins making up
one "pitch" of the screw is
plotted on abscissa.

0.5

%=1
0.0

It has, unfortunately, not been possible to find a
general rule of formation for the matrix for all
values of n. But the number of regularities is
sufficiently large to permit guessing of the ele-
ments with the help of some of the equations (68).
Thus our purpose of computing x"(E,) without
the knowledge of the secular equation is achieved.
The latter method was used as a cross check for
the smaller matrices.

We find, in this fashion, the values for x(X.)
and x"(X,) as functions of n given in Table II.
Because of (56), these numbers are the only
variables to enter into the specific heat as given
by (33):

The resulting curve is plotted on Fig. 5. It indi-
cates that the mutual relation approaches line-

arity. This is borne out even more exactly by the
analysis shown in Table III. The first two
columns contain the argument n and the function
S, then follows the difference quotient dividing
the increment of S by the increment of logn.
That this quotient tends to a constant is shown
in the next two columns. The first shows that the
differences between successive quotients decrease
rapidly, and the last, by forming the ratios
between those differences, shows that the de-

crease is exponential and therefore suAicient to
guarantee convergence of the difference quotients
to a constant value.

%'e conclude therefrom that the specific heat
of the two-dimensional square net of spins is
infinite at E,, =0.4407, insofar as numerical
extrapolation methods are able to decide such a
question. Whether this means a latent heat or
not is beyond the scope of the method.

(70)

TABLE III.

&s
6 LOGN

aS
5 LOGlt

RATIOS
OF ASS =C/R

0.38841

0.59230

0.75637

0.88642

0.99167

1.07928

0.2942

0.4046

0.4520

0.4727

0.4805

0.1105

0.0474

0.0197

0.0088

0.43
TABLE II. Va/nes of x and x".

0.42

0.45
4.66665
5.62246
6,41935 6

0.00000 4
2.97715 5
3.48493 6

1.81984
1.81002
1.80450

2.00000
1.88320
1.83929

The fundamental question of this section is:
does the quantity S tend to infinity or not with
increasing nP Since this involves extrapolating to
the limit of an infinite sequence from its first six
niembers the answer is somewhat a matter of
judgment. This is particularly true in this case
because the growth of S is decelerating with n. A
careful analysis of the data, however, still indi-
cates strongly that C tends to infinity. The
conclusion is reached by comparing S with logn.



X X(p, , zz )a(zz„)a(z)z

) =Xi'Iax (71)
an a's y, [a(zz,)']'-

Expression (71) obviously suggests a variation
method in which a restricted set of competing
functions are used for the a' s. In the first place,
the correct c's themselves possess the symmetries
of the nucleus K as may be verified from Section
3. In the second place, v e may restrict ourselves
to combinations of the p, 's which are linear in

each of them, since p,2 = 1.Let us note down a few

7. A NET APPROXIMATION OE A FOR

ALL TEMPERATURES

The calculations of the preceding section indi-
cate that we are not able, at present, to dispense
with approximate evaluations of X. But even in
this field better results can be obtained with the
eigenvalue method. We depart in this case from
the eigenvalue problem (12) referring to an
infinite strip (Fig. 2). For simplicity we may
assume that the free ends of each strip are linked

up with each other. This will make it an infinite
cylinder in which each level circle consists of n
equivalent spins. Our unknown ) is then the nth
root of the eigenvalue p.

The largest eigenvalue of a matrix can always
be expressed in a variational form. In our case we
..nd from (12)

of them
P1+g2+P3+P4+ ' ' '

P 1@2++2+3+@3g4+ '

IJ1P3+P2P4+P3PS+ ' ' '

P1PgP3+Pg+3P4+ ' '

P, 1JL44+ ' ' '
~

Among them, the first two are outstanding be-
cause K contains them already explicitly. Let
us, therefore, put

n

Q Iz;=nm, (72)

Z zz'zz'+z=nq
i=1

(73)

and evaluate the maximum of (71) under the
restriction that the a's be of the form

a(zz;) =a(q, m). (74)

We shall prove now that there is a form of c
equivalent to (74), which has, however, great
practical advantages. This form is

a(zz„.) =expnIIE(K, C)q+A(X, C)mI, (75)

where IX and A are constants as far as q and m

are concerned, but depend upon temperature and
field, i.e. , X and C as parameters. This depend-
ence has to be determined by the maximum
condition (71).

The first step of the proof is to introduce explicitly the assumption (74) into (71). For this purpose
we denote by

expng(g, m)dqdnz, (76)

the number of arrangements of the p, 's lying in a rectangle of sides dq and dm around q and m. Let
us also introduce the notation

exp[n& P zz;p, ]= exp [nf(q, n, q', m')]dqdmdq'dm', (77)
i

q, m, q', m'

where the summation on the left is extended only over those combinations that lie within a volume
dqdmdq'dm' around the point q, m, q', nz'. Then (71) takes the form

ffff expnI f(q, m. , q', zn')+-', E(q+q')+ ', C(m+m') I-a(q, m)a(q', m')dqdmdq'dnz'
'A" = Alax —— (78)

JJ' expng(q, m) a'(g, m) dqdm
Now transforming

we write
a(q, m) = b(g, m) exp[ —,'ng(g, zn)], —

X"= AIax- ——----- ------

ffff expn ', f(g, m q', nz') —', g(g. , m) —';g(g', m')-
+'z~(q+q')+-,'C(m+m') Ib(q, m)b(q', m, ')dqdmdq'dm'

j'J'b'(q, m) dgdnz



T EVi 0 —D I M E N 8 I 0 N A L F E R. Vi 0 M A G N E T

We can study this maximum problem in two parts; first we may assume the denominator to be
normalized to unity and then we may look for the maximum of the numerator. If we do that we see
that we shall get X" as large as possible if we let 0 be large wherever the exponent reaches its maximum.
If we evaluate then the integral with the saddle point method, b(q, m) will make no contribution to
it because of its normalization and we get

jogX= Max [f(q, m, q', m') ——',g(q, m) —-', g(q', m')+-', E(q+q')+,'-C(m+m')]. (79)
Q, 2B, Q, 'r!s

We can eliminate the unknown functions f and g xvith the help of simpler ones. 8 e introduce the
solution y" of a two-strip problem

y"(I, B, I', B') = X expl X Q!i,!i',+I Q p,!i,~i+I' Q p', !i';~i+B Q!i;+B'Q!i';]
Pi,~ Pi.I i=1 &=1 l —1 i=1 i=1

or because of (72), (73), and (77)

t jt J~Jf cxpn {f(q, m, q', m') +Iq+I'q'+Bm+B'm'}dqdmdq'dm'

(80)

For large n we can evaluate y by the saddle point method

logy(I, B, I', B') = Max [f(q, m, q', m')+Iq+I'q'+Bm+B'm'].
q, m, q', m'

Similarly we introduce two one-strip solutions

(81)

P"(II, A) = X exp[2H Q!i,p;+i+2A P!i~], (82)
i=1 l=l

log/(H, A) = Max[g(q, m) +2Hq+ 2Am] (83a)
rI, m

log/(IF, A') = Max [g(q', m')+2H'q'+2A'm, ']. (83b)
I

It looks incorrect at first sight to substitute (81) and (83) into (79) because the former are already
maximized with respect to q, m, q', m'. However, the parameters I, 8, I', 8', H, A, H', A' are arbi-
trary, and, as they vary, the quantities q, nz, q', ns' cover their full range of variability, We may
therefore carry out the substitution and write

which can be written as

and similarly

logX= Max [logy(I, B, I', B') —-,'log&(FI, A!—-', log&(H', A')+(-,'& —I+H)q
q, m, q', m'

+(,'K I'+H')q'+( -,'C —B+A)m+( ',—C —B'+A')m']. -(8—4)

In studying (84) we have to distinguish three types of relations between the quantities involved:
(a) The extremal conditions on y and P indicated in (81) and (83). We shall use these conditions

only in an indirect form. They are sufficient in number to make the expressions I, 8 A functions
of q, m, q', m', or vice versa. Another consequence is that first derivatives of y and P inay be fornied
as if q, m, q', m', appearing explicitly in (81) and (83), were constants.

(b) The relations expressing the identity of q, m, q', m' in the various parts. They read

r! logy 1 8 log/—=q,
BI 2 BH

r! logy 1 8 log/'

8I' 2 BII'

8 logy 1 8 log/

88 2 BA

~7 logy 1 8 log/'
= rn'.

88 ' 2 BA'

(c) Finally, the extreinal conditions on X
I

8 logX 8 logy r!I 8 logy BB 8 logy BI' r! logy BB' 1 r! log/ BH 1 i! log/ BA—+ + '+
c)q &3I &3q 88 Bq BI' &3' 88' Bq 2 BH Bq 2 BA Bg

(BI BH) BI' t'88 BA ) 88'
}-m +-;Z-I+H=O

Eaq aq) aq Eaq aq) aq
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and three similar equations. The relations under (b) simplify them to

I= —,'X+II, I' = —,'%+II',
8= -'C+A, 8' = -2K+A'.

If we eliminate I, I', 8, 8' with the help of these four equations, (84) takes the form

and the equations under (b) read

x( ';K+H-. , —'., C+A, ',K+-IZ, —,'C+A')

[P(II, A)P(II', A') }

0 logk 8 logX 8 log) 8 logX
=0

8H 8H' 8A 0A'

i.e., the four parameters H, II', A, A' must make X a stationary value. Should there be several sets of
solutions leading to several possible sets of q, m, q', m', then the origina1 maximum condition wou1d
demand the largest one. This gives, then,

x(;'K+II, —',-C+A, ;'K+II', --';C+A')
'A= M ax

[$(II A)g(FI' A')]'*'
(85)

Our last step is to prove that
II=IX, A =A'.

This is done by substituting (80) and (82) into (85). Remembering the de6nition (12) of 'JC we get
it in the form

x,~(i, i ')c(i )d( '')
Pi+i

X"= Max
}[xc"-(p;)7[x d (p2;)]}'

pi Ri

(86)

where the competing c's and d's are a restricted class of functions obeying (75). This maximum
problem does not seem to agree in form with our basic equation (71).The greater generality is only
apparent, however, for we can prove the following theorem:

Ifwe have a set of c's and d's defining X as in (86) a larger X can always be obtained either by replacing
the c's by the d's or else the d's by the c's. We prove, first, the lemma that

x ~(i ', i '') a(i *)a(i ')
Pg', , Pi

is a positive definite form. We proceed by induction, starting from the fact that the statement is
manifestly true if the a's depend only on one spin p. Now suppose it to be true for n —1 spins then we
can prove it for n. The nucleus X is of the form

Se(p;, p, ) =4(p, ;)4(y ) expK Q p;IJ,'
i 1

Absorbing the p's into the a' s, which are arbitrary, we must only prove that
n

F= x exp(K Z ~,~ )a(i,)a(),')
I'i. &i 1

is a positive definite form. Now we single out p,„and p„' and denote by X'&,, &,' summation over the
remaining p's. Since p,„ is only capable of two values, the dependence of a on p„can be made explicit
by writing

a(i ') =~(~')+~-P(~'),
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where u and P are independent of p . We can thus carry out the summation over p and p
' and get

F in the form
e—l, e—1

F=4cosh2X X' cxp(X Q 1111,')n(11;)a(p )+4sinh2Ã X' exp(Z Q pp )p(p)p(p ).
&i. &i i=-l &i~ &i i=1

This ploves our lcnlma, for the t%0 rig*ht-hQ. nd sides arc, by assumption, posltlve. To pIove the
theorem itself we apply the Schwartz inequality to (86); assuming the c's and d's normalized we get

which proves the theorem. It transforms (85) into the 6nal form

x(-,'X+H, -', C+A)
A=Max

p(~, g)
(87)

Because of (12), (80), and (82), it is that particular case of (71) in which the a's have the form (75).
Hcllcc (75) 1s R consequence of (74). Tile Rpprox1111at;1011 could bc pushed fill tllcl, 111 pl 111clplc, by
niaking 6 depend on IIlore thail fust tkvo paran'letels alnoI1g the ones listed on p. 268. 011e verifies
easily that such an expression could still be transformed to the form (75). Other parameters beside
II Rnd A would 'tllc11 llRvc 'to bc added 'to (87).

To evaluate (87) we observe that x and f can be easily obtained by the methods of Sections 2

and 3. The explicit form of t) is actually given in (9) and y is obtained from a fourth-order matrix
p1oblem of tllc type (12). Using the dcflnltlons

we find for P

e~ =k e~=c e'~=h e"=c

iy t ip ' 4 "
y=-,'k/ ~+- /+-',. k2) ~—

/

+-
a) I u) h'

(88)

iq ip iq p ly p iq t iy t 1~'
I
«+—(+-I»+—

I +xl » l»I «—+—I+k')»+ —
I

-kl »—
(

=o
ac) k & kk) & kk) & n.) & kk) & kk)

(89b)

The computation was only carried through for zero field, i.e., c=0. In this case u= j. is a possible
solution since both r7$/Ba and Bg/Ba vanish at that point. The equation in x then factorizes into

iy P 1 q t 1 y' f' 1 y-, —,
~

k+-
~~ kk+—~+~ kk—[,-k~ »—

~

=O
k) ( kk) & kk) ( kk)

and the last solution may be discarded. The equation may be considered an equation in ). The
substitution

kk —(1/kk)
=sX

k+ (1/k)
brlllgs lt. In the for11l

A=Max
(s —sinhK) '+ 1 —sinh'E

which ls immediately maximized to

1 —sinh'X
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It 1S obvious that (90) cannot bc valid fof high values of E. In that I eglon anothel solution havmg
aA1 becomes the correct one (nonvanishing "inner Geld"). The substitutions

I
Ia -I-—=s)„

I
7+- I-=y

kkl p

transform (87) into

X= Max
s) 1y ) 1y p 1y

&+——-I & ——I+s'&'I & ——
I

—s'&I &+—
I
—2»(& —s)y

5) ( y) ( ui

Forming BX/By =0 and eliminating y we find

( 1't f' 10 (1
(l -~')"'(~—)'-(7 —~')(~ —)I —"

I ~l ~'—
I
—

I
~'+—

I +I —-"
I

=0
u2&

After restoring linearity by the substitution

(1/k') —s'/s(k —s) = (X—k') /s,

we may carry out the second dilferentiation BX/Bs=0 We g.et

(1+(2/I ).+.2)2=[i 2 (1/f ~-) j3.
(1+0's)(1 —s')

A. =k'+
k'[k' —(1/k') j

'+17'
Xc= p 10g—

4
=0.4122,

The two pieces (90) and (91) make up the complete solution. They join with a common tangent at
the point

which means a transition without latent heat, but with a, discontinuity in the speci6c heat curve.
Other features of the solution will be discussed in the next section.

Several approximate methods have been de-
veloped in the past to arrive at the partition
function of a set of regularly arranged spins.
The first evaluation of X is due to Heisenberg in

his original paper on ferromagnetism. I2 His
method has been systematized recently by Kirk-
wood" who developed a scheme of successive

appI. ox11TlatloIls of which HelseIlbel g's ls the
erst step. It is based on the following considera-
tion. Expression (2) for X depends on two com-
binations involving the p's, namely

Q p;pk=2Nq, Q p, =Em.
(i, I;}

If we denote the density of arrangements in

q —m space by D~(q, m) we have

~'%. Heisenberg, Zeits. f'. Physik 49, 619 {1928).See
also: R. H. Fooler, Stafist2cal 3Achenics {Cambridge
University Press and Macmillan Company, 1936), second
edition, p. 485.

John G. Kll kwood, J. CheIll. Phys. 6, 70 {1.938); see
also F.C. Nix and%. Shockley, Rev. Mod, Phys. 10, 27, 65
{1938).

X~= t~I dqdm exp%,'logD(q, m)

+2Eq+ Cm I . (93)

Now D'v(q, m) is unknown, but the expression
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that results from it by integration over q is
known. It is given by

logD(m) = log2 ——',(1—m) log(1 —m)

——',(1+ns) log. (1+m).
Hence if the term Xq can be developed in terms
of X and nz only, the expression can be inte-
grated. This is done by identifying the power
series in powers of X resulting from (93) with the
one resulting from a hypothetical expression of
the form

2.0

X =) dm exp' logD(m)+Cnz+rg2E

r~ = X(g~,' —gA, ') =-,'(1—m') ',

r3 —+s(g~q3 3g~ 2g~q+2g~q3) =ma(1 —gg )

(94b)

The evaluation of m as a function of X follows
then from the usual extremum condition of the
saddle point method.

The result of the Heisenberg approximation
which proceeds only to v2 is somewhat sur-
prising. It gives a phase transition at

X,=0.3912

with a jump of —8/XJ from 0.6370 to 0.3912.
The result should not be taken too seriously,
however, for the next stage of the Kirkwood
method, which is being evaluated numerically
for the first time in this paper, brings about a
regular Curie transition with specific heat jump,
which takes place at

X,=0.3389.

A more simple and straightforward treatment
is the one developed by Bethe. '4 In its simplest
form it treats only one spin with its direct
neighbors by statistical methods, but the piece
to be studied can be enlarged at will to approach
the true solution. At low temperatur es this

'4 H. A. Bethe, Proc. Roy. Soc. A150, 552 (1935);see also
Nix and Shockley, reference 13, pp. 17, 63.

1
+—vg(2X)'-'+ —r3(2X)' . (94a)

2! 3!
The g averages which result can be evaluated
along the lines which led to formula (41). The
first three v. 's have the following values

7 y
= g Ay

= tPS )
2

0.8

0.6-
K= Z/a). T 05 O.Q

Fro. 6. Logarithm of partition function against reciprocal
temperature. 2-screw approximation (upper curve);
variational solution (lower curve). ————Bethe solution.
The slope of the curve is proportional to the energy at that
temperature.

simple approximation is improved by assuming
an ordering potential acting on the outer spins.
It is determined by demanding symmetry in the
result between them and the center spin. As a
result of this calculation the following expressions
are obtained for X:

X=2 cosh'
g
—2K

g2K+
g4K

below E„
(95)

above X,.

The two solutions join with a specific heat
jump at

X,=-,' log2 =0.3466.

Results on the so-called second approximation
of Bethe have been communicated to us by Mr.
Groen. Its singular point is located at

X,=0.381.;

Zernike" has indicated a more dynamical
approach to the problem by studying the propa-

~ F. Zernike, Physica 7, 565 (1940).



gation of order in a lattice. By Boltzmann's
theorem we can express the probability that a
given spin has either value in terms of the
probabilities for its neighbors. If the latter are
treated as independent, a system of difference
equations is the result. The unknowns are the
probabilities I'qq(y) for each lattice position h, k

and the system is such that it permits the com-
putation of any P from one given one. If we
now take a certain spin as given, say Zoo(+) = 1,
we can ask for the probabilities for a spin very
far away. At high temperatures, this limiting
probability is —', ; Zernike is able to show, how-

ever, that below a certain temperature limiting
probabilities different from ~ will result. In our
case this critical temperature is given by

tanh4X, +2 tanh2Z, —2 =0 (96)

X,=0.3236.

The method is capable of giving all standard
thermodynamic results because Poq(p) is directly
connected with the energy. It is found that the
contact between the two branches is rather
smooth, giving a discontinuity in the derivative
of the specific heat only. It is interesting to
notice that these calculations lead to a sym-
metry between very high and very low tempera-
tures which is similar to (26). The propagation

at high temperature of short range order in a
generally disordered lattice leads to a diR'erence

equation of the same form as the propagation
at low temperature of local disorder in a generally
ordered lattice fZernike, Eqs. (5) and (44)j.

Among the approximations, the X's of Section 6
(referred to below as "screw" solutions) should
not be forgotten. They are, by their very nature,
continuous functions of E, but compare not
unfavorably with other approximate solutions.

In comparing various approximations it should
be borne in mind that most of them are primarily
approximating the partition function ) . It follows
that an improved method of approach does not
necessarily yield better energy and specific heat
data, although it will be the ease as a general
rule. The differences in X we have to account for
are not large. In Fig. 6 curves having logX plotted
against X are given for the Bethe solution, the
variation solution (Section 7) and the 2 screw.
Most solutions discussed in this section are too
small because they are essentially of the type
(71); the screw solutions, on the other hand, are
too large.

All X's agree for very large and very small E
and their usefulness may be tested by com-
paring their series expansions with (41) and (43).
Ordering the solutions according to magnitude,
we find for small E

7
3 screw.'X=2 1+E'+—E4+

3

4 227
Zernike: ) =2 1+E'+—E'+ E'+ . .

3 45

& scl cw:

correct:

4 122
X = 2 1+E'+—E'+- — -E'+

3 45

4 77 1009
),=2 1+E'+—X4+—E'+ E'+

3 45 315
(97)

4 77 694
variation: 'A = 2 1+¹+—E +—E + X +

3 45 315

1
Heis-Kirk: ) =2 1+X'+—E4+

2

1
Bethe I X=2 1.+E'+—E4+

3
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For large X we find

3 screw. '

5 screw:

correct:

variation:

Bethe I:

X=k'[1+2k "+
X=k'[1+k "+3k "+

k-[1+k '+2k "+5k "+14k 'o+

X=k'[1+k '+2k "~5k "+14k '-'"+

X=k'[1+k '+2k "+4k "+ (98)

)64
Kirkwood: X=k'[1+k '+k —"~ E'+—16K'+8K I+(3

Heisenberg: X=k'[1+k '+k "(16K'+8K)+
Zernike: X=k'[1+-'k '+

It may be noticed that the Bethe and Kirkwood
methods switch places in the two tabulations.
The reason is that the Bethe method is more
elaborate for low temperatures. The Kirkwood
approximation, on the other hand, is poor for
very low temperatures because (94) is indirectly
based on a 1jT expansion. ' A similar situation
exists for the Zernike solution because of his
assumption of independent probabilities. Com-
pared to other methods, our variational solution
is very satisfactory. Being of the type (71), it
lies below the true solution, but extremely close
to it. A similar conclusion is reached if we
extrapolate the sequence on p. 265 to find the
value of'AatE=0. 4407. AVe find about X =2.5335,
which is very close to the variational value
X =67 —47&2=2.5320, but quite above the Bethe
value A. =2.5224.

This simple situation is complicated some-
what when we form the first and second deriva-

tives of A, which give the energy and the specific
heat through (17) and (18). A solution whose X

is too large has an energy curve which is too
smooth; and if X is too small the energy passes
too rapidly from one extreme to the other. This
conclusion is verified by the energy versus tem-
perature curves in Fig. 7. Beside various approxi-
mations, Fig. 7 has the exact location of X.
marked off together with its energy value (36).
The correct curve passes through that point
very probably in a vertical direction (Section 6).

If we disregard the Heisenberg solution which
carries little weight for reasons mentioned above,
we may divide the approximations in two classes.
The ones proceeding from finite problems and
the one given by Zernike have energy and
specific heat continuous throughout. The others,
using some kind of an inner field assumption,
arrive at one singularity with a jump in the
specific heat. As examples, specific heat curves

-0.2

-0.4
E

NZ
-06

-0.8

FIG. 7. Energy versus
temperature in various
approximations.
3-screw approximation.

Variation method.
Bethe method.

~ ~ - ~ - - Heisenberg and
Kirkwood. 0 Singular
points. Point with vertical
bar belongs to exact curve
(with vertical slope).
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Fr@. 8. Specific heat
versus temperature curves.

2-screw approxi-
mation. Variation
method. ———— Bethe R
method. . - - Kirkwood
method.
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l 2
I/K =2~T/J

are plotted in Fig. 8 for the 2-screw and the
variational Bethe and Kirkwood solutions. The
large discontinuity in the specific heat is the
dominant feature of the latter three. However,
this result cannot possibly be correct, for it
could be disproved by exact methods in Eq. (35).
In view of the results of Section 6, it seems,
therefore, that the main significance of these
approximate results is not to be sought in the
jump of C, but rather in its numerical magnitude
at the Curie point. This magnitude increases as

the approximation improves. Simultaneously,
the position of the singularity approaches the
value (31), as can be verified from the data of
this section and (92). Thus the approximate
solutions of the last two sections are not in con-
tradiction to the conclusions of Sections 4 and 6,
that the Curie point lies at X,=0.4407 and that
the specific heat at that point is infinite.

In conclusion, we want to express our thanks
to Mr. P. Groen who has assisted us in some of
the calculations.


